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Abstract

The dynamics of the reshocked multi-mode Richtmyer—Meshkov instability is investi-
gated using 513 x 2572 three-dimensional ninth-order weighted essentially nonoscillatory
shock-capturing simulations. A two-mode initial perturbation with superposed random
noise is used to model the Mach 1.5 air/SFg Vetter—Sturtevant shock tube experiment.
The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to
show the detailed flow structure before, during, and after reshock. It is shown that the
mixing layer growth agrees well with the experimentally measured growth rate before
and after reshock. The post-reshock growth rate is also in good agreement with the
prediction of the Mikaelian model. A parametric study of the sensitivity of the layer
growth to the choice of amplitudes of the short and long wavelength initial interfacial
perturbation is also presented. Finally, the amplification effects of reshock are quantified
using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as
well as the evolution of the baroclinic enstrophy production, buoyancy production, and
shear production terms in the enstrophy and turbulent kinetic transport equations.

Keywords: Richtmyer—Meshkov instability, reshock, mixing properties, weighted
essentially nonoscillatory (WENO) method

1. Introduction

The Richtmyer—Meshkov instability develops when perturbations on an interface sep-
arating gases with different properties grow following passage of a shock [3, 23|. Following
the passage of the shock, the interface is accelerated along the direction of shock propa-
gation and a transmitted shock enters the second gas. The misalignment of Vp and Vp
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deposits vorticity w = V x u on the interface through baroclinic vorticity production:
in three dimensions a

fw:MeroVuwa~u, (1)

dt P>
where d/dt = 9/0t+wu -V and viscous terms are neglected. The second term on the right
side is zero in two-dimensional flows, in which there is no vortex stretching. The difference
between two- and three-dimensional turbulence dynamics is largely associated with the
physics of vortex stretching. The vorticity deposited on the interface by the shock drives
the instability, resulting in interpenetrating bubble- and spike-like structures. Complex
roll-ups of the evolving interface later appear. The transmitted shock reflects from the
shock tube end wall and interacts with the evolving interface during reshock, depositing
additional vorticity on the crenulated interface and generating additional small-scale
structure within the mixing layer. As Richtmyer—Meshkov instability-induced flow is
initiated by a shock wave, a direct numerical simulation (DNS) is not possible due to the
prohibitively small scales needed to resolve the complex interactions of the shock with
the density interfaces and the shocks themselves. As a result, numerical investigations
of this instability have typically utilized conservative Eulerian shock capturing methods
that do not resolve all of the spatial scales and small-scale interactions, but instead ensure
that fundamental quantities are conserved across a shock and that the shock speed is
accurately captured.

This study investigates various properties of the reshocked multimode Richtmyer—
Meshkov instability using three-dimensional (513 x 2572) ninth-order weighted essentially
nonoscillatory (WENO) simulations for the further development and eventual validation
of turbulent transport and mixing models. The high-resolution, finite-difference, Eu-
lerian, shock-capturing WENO method using a third-order total-variation diminishing
(TVD) Runge-Kutta time-evolution scheme (see [1] and references therein) is applied
here to a model of the Mach 1.5 air/SFg Vetter—Sturtevant Richtmyer—Meshkov instabil-
ity shock tube experiment [27] for long evolution times. The membrane pushed through
the wire mesh is modeled using a two-mode initial condition [4, 11], consisting of a high
frequency and a low frequency component, together with superposed small-amplitude
noise. The dynamics of reshock is explored using both isosurface visualizations and the
time-evolution of the mixing layer width. A quantification of the sensitivity of the pre-
and post-reshock mixing layer width on the choice of the initial amplitudes in the two-
mode initial perturbation is also presented. The numerical model of the experiment is
validated by comparing to experimental amplitude data, and the simulations are ex-
tended to longer times than available in the experiment. The post-reshock simulation
data is also compared to the prediction of the Mikaelian reshock model [19]. In addition,
the amplification of turbulence within the mixing layer is investigated by considering the
evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as of
important turbulent kinetic energy and enstrophy production mechanisms.

This paper is organized as follows. Previous experiments and simulations relevant to
the present study are briefly summarized in Section 2. The numerical method, model
of the initial interfacial perturbation, and the simulation of the reshocked Richtmyer—
Meshkov instability are summarized in Section 3, including a brief discussion of the
benefits of formally high-order methods for investigating complex shocked flows. The
dynamics of the instability evolution is illustrated through visualizations of the mass
fraction and enstrophy isosurfaces, and density cross-sections in Section 4. The evolution
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of the mixing layer width is compared to the experimental data, and the sensitivity of
the width to the choice of initial perturbation amplitudes are discussed in Section 5.
The amplification of the turbulence within the mixing layer by reshock is investigated
using energy spectra and the principal production terms in the turbulent kinetic energy
and enstrophy transport equations in Section 6. Finally, a discussion of the results and
conclusions are presented in Section 7.

2. Previous Experiments and Numerical Simulations

Presented here is a brief review of the Vetter—Sturtevant experiments and previous
numerical simulations and recent experiments relevant to the current investigation. In
the subsequent description of previous and present simulations, it is assumed that the
shock propagates along the z-direction.

2.1. The Vetter—Sturtevant experiments

Vetter and Sturtevant [27] performed shock tube experiments to investigate the effects
of reshock of an evolving Richtmyer-Meshkov instability-induced mixing layer using a
larger test-section than in previous experimental work. The larger test section allowed
the growth of the mixing layer and evolution of the instability to be studied with minimal
shock wave-boundary layer interaction. The 27 cm X 27 cm square test section of the
shock tube had a length of 61 cm for the ‘short’ experiments and 122 cm for the ‘long’
experiments, and was filled with air and sulfur hexafluoride (SF4) gas separated by a thin
nitrocellulose membrane supported by a wire mesh. The wire mesh had spacing of 1 cm
and the initial perturbation had an amplitude of approximately 0.1 cm. A shock wave
with a Mach number ranging from Ma = 1.18 to 1.98 was launched in the air, ruptured
the membrane, and refracted at the interface. The transmitted shock then reflected from
the shock tube end wall and reshocked the evolving interface. High-resolution spark-
Schlieren images were obtained to study flow features and obtain measurements of the
growth of the mixing layer. The experimental configuration allowed the measurement
of the width h of the mixing layer both after the initial shock passage and through the
reshock phase. Additional details of the experiments are available elsewhere [11, 17].
The measured growth rates obtained from the experiments were compared to the
analytical prediction of Mikaelian [19] for the shock-induced reacceleration of an evolving
interface
h(t) = 0.28 Au; AT ¢, (2)

where Au; is the change in the interface velocity caused by the second shock, AT is
the post-reshock Atwood number, and ¢ is time. This phenomenological model is based
on results from the rocket-rig experiments of Read [21] and Youngs [29] for the growth
of Rayleigh—Taylor unstable mixing layers; the empirical coefficient 0.28 is based on the
mixing layer growth rate from the experiments [21]. Note that (2) is independent of the
initial perturbation amplitude and predicts a linear-in-time growth of the mixing layer
width. The measured values in the experiment were one order of magnitude lower than
the analytical predictions. Better agreement was obtained when the grid was placed
downstream from the interface: in this configuration the shock pushed the interface
through the wire mesh causing it to fragment. In this case, the results were approxi-
mately one third smaller than the analytical predictions, suggesting that the membrane
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fragmentation may have significantly damped the mixing. Agreement with the Mikaelian
model after reshock was observed for all cases, indicating that the structure following
reshock is weakly dependent on the initial conditions.

2.2. The Leinov et al. experiments

More recently, the effect of reshock on Richtmyer—Meshkov mixing arising from differ-
ent arrival times of the reflected shock at the evolving mixing layer (achieved by changing
the test section length from 80 c¢m to 172 cm) and from light-to-heavy and heavy-to-light
gas configurations was studied using Schlieren imaging in Ma = 1.15-1.45 air/SFg ex-
periments [16, 17]. A thin membrane separated the gases and had randomly distributed
small-scale perturbations with random wavelengths ranging up to A ~ 0.1 cm. The evo-
lution of the mixing layer following reshock was found to be independent of its amplitude
at the time of reshock, but dependent on the strength of the shock reflected from the end
wall. The mixing layer grew linearly in time following reshock and before the interaction
of the reflected rarefaction with the evolving interface. The growth rate was independent
of the reshock strength when normalized by the distance traveled. The results were in
good agreement with the Mikaelian model (2), but with coefficients ranging from 0.28
to 0.39 from several sets of experiments. A comparison of the experimental results to
those from arbitrary Lagrangian-FEulerian (ALE) simulations using the LEEOR3D code
suggested that the post-reshock linear growth is a result of bubble competition.

2.8. Simplified piecewise-parabolic method simulations

Cohen et al. [4] performed a highly resolved (20482 x 1920) three-dimensional simpli-
fied piecewise-parabolic method (SPPM) simulation of the Ma = 1.5 Vetter and Sturte-
vant experiment before reshock with the wire mesh downstream of the interface. To
approximate the thin membrane supported by a wire mesh, a two-mode perturbation of
the form

n(y, z) = 0.01[|sin (ky) || sin (kz) | — cos (27y) cos (27z)] , (3)

was chosen, where & = 10m. The first term represents the small-scale perturbation
associated with the wire mesh, and the second term represents the scale associated with
the transverse dimension of the shock tube scaled to have a width of 2w. The study of
the evolution and interaction of a two-scale initial perturbation provides a simple model
for the fundamental pairwise interaction of scales in turbulence. The simulation was
performed using a simplified form of the piecewise-parabolic method (PPM) [5] applied
to the Euler equations for compressible ideal gases. The single-fluid limitation of the
code used was not expected to affect the macroscopic behavior of the flow for relatively
weak Ma = 1.5 shocks; the adiabatic exponent was chosen as v = 1.3.

The flow was visualized by considering the entropy s = In(p/p”) as it well tracks
the contact discontinuity and exhibits a small change across the shock. The mixing
layer width, h(t), was defined in terms of the entropy as follows. Let s; and sy be the
value of the entropy to the left and to the right of the mixing layer, respectively. Let
S = (s1+ s2)/2. Define z; as the location where transverse slices have range [s1, 3]
and zo as the location where the range is [3,s3]. Then the mixing layer width is the
difference h = xo — x1. The mixing layer width obtained from the simulation and from
the experiment were in generally good agreement.
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2.4. Large-eddy simulations

Hill, Pantano and Pullin [11] performed large-eddy simulations (LES) of the Vetter
and Sturtevant experiments using a hybrid tuned center-difference (TCD) and fifth-order
WENO scheme, and the stretched vortex subgrid-scale model. A third-order strong-
stability preserving Runge-Kutta time-evolution scheme was used. The initial perturba-
tion was of the form

U4

n(y,z) = ao ’sin (%y) sin ( 5 )’ +bo(y, 2) (4)

where A &~ 27 cm/14 = 2 c¢m, ag = 0.25 cm, by = 0.025 c¢m, and ¥(y, 2) is a noise with
prescribed spectrum k* exp [— (k/ k‘o)ﬂ with kg = 4 corresponding to a peak wavelength

ﬂ/\/g m. Simulations were performed for Ma = 1.24, 1.5, and 1.98. The grid resolutions
were 616 x 1282 and 327 x 1282 for the smallest and largest Mach numbers, respectively,
and 388 x 1282 and 776 x 2562 for the two intermediate Mach number simulations.
Binary mixture relations were used to compute transport coefficients and thermodynamic
quantities. The growth rates from the LES were is good agreement with those measured
from the experiments.

More recently, Ukai et al. [26] performed three-dimensional 746 x 1402 LES of the
Ma = 1.5 Vetter—Sturtevant experiment using a one-equation model for the subgrid-
scale kinetic energy. A hybrid finite-volume method was used, in which a fourth-order
central scheme is used in smooth flow regions. The flux evaluation used a high-order flux
difference splitting method in regions with strong gradients. A second-order predictor—
corrector time-evolution scheme was used. The initial condition (4) was also used. While
the mixing growth rate before reshock was overestimated, the growth rate following
reshock was in good agreement with the experimental data. Vortical structures were
visualized by using isosurfaces of the Q-criteria, and two regimes with strong vorticity
were identified at the edges of the mixing layer.

3. Equations Solved and the Numerical Method

The WENO reconstruction used in the present study is briefly described, and its ben-
efits for investigating complex hydrodynamic flows with shocks are discussed. Formally
higher order reconstructions are less numerically dissipative and have greater resolving
power than lower order reconstructions [14, 30]. Thus, high-order WENO methods are
suitable for investigating multidimensional shock-driven flows in which the dynamics of
a wide range of spatial scales and complex wave structures must be characterized with
high fidelity.

3.1. Equations solved and description of the WENQO algorithm

Simulations were performed using the characteristics-based finite-difference WENO
method [1, 25]. The Euler equations were augmented by the mass fraction to track the



mixing dynamics
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where p is the density, u = (u, v, w) is the velocity, p = pRT is the ideal gas pressure (R is
the gas constant), e = (u? + v + w?)/24p/(y — 1) is the total energy per unit mass, and
m is the mass fraction of the denser gas. A convex nonlinearly-weighted combination of all
polynomial flux reconstructions is used to achieve the essentially nonoscillatory property
and formally high-order accuracy in smooth flow regions. Ninth-order reconstruction was
used for its desirable properties of reduced numerical dissipation and better preservation
of small-scale structures [14].

The eigensystem of fluxes in the Euler equations is obtained from the Jacobian of
the Roe-averaged fluxes in each spatial direction. The linearized Roe Riemann solver
[22] is used to obtain the eigenvalues and eigenvectors. Lax—Friedrichs flux-splitting
is used to split the original fluxes into their positive and negative components. The
positive and negative flux components are then projected in the characteristic fields
using the left eigenvectors to form the positive and negative characteristic fields at each
cell center. An rth-degree piecewise-polynomial is then used to reconstruct the projected
fluxes at the cell boundaries with high-order accuracy: a weighted convex combination
of all possible rth-degree piecewise-polynomial approximations (r = 5 for ninth-order)
of the characteristic fields using the neighboring cell-centered values is constructed and
evaluated at the boundaries of a given cell. For a given reconstruction order, there are r
possible rth-degree piecewise-polynomials, with properties depending on the smoothness
of the underlying solution. As the polynomials may use stencils containing discontinuities
(and, thus, induce Gibbs oscillations), a weighted average of all of the possible polynomial
reconstructions at a point is computed. The weights of the r possible stencils around a
given cell center are computed from the projected flux via a divided difference. Essentially
zero weights are assigned to polynomials crossing discontinuities and nearly-equal weights
are assigned to polynomials over smooth regions. The formal order of accuracy for the
derivative of the flux is 2 — 1 in smooth flow regions. The semi-discrete equations are
evolved in time using the third-order total variation diminishing (TVD) Runge-Kutta
method [1].

Conservative finite-difference discretizations of the Euler equations with WENO flux
reconstruction contain implicit truncation errors that can be regarded as a nonlinear,
adaptive numerical dissipation. The present simulations can thus be interpreted as a
class of implicit large-eddy simulations (ILES) [2, 8-10], in which the equations are im-
plicitly filtered by the discretization and the numerical dissipation is a surrogate for an
explicit subgrid-scale model. As the nondissipative compressible fluid dynamics equations
are formally ill-posed, this numerical dissipation regularizes the numerical method. As
a result, quantities obtained from such simulations depend on the resolution and cannot
be regarded as fully resolved. ILES methods typically dissipate velocity and scalar fluc-
tuations approximately in the same manner numerically: the numerical Schmidt number
is of O(1), which may provide a reasonable model for the mixing of ideal gases. The
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reduced numerical dissipation of WENO schemes (or modifications thereof) can be cou-

pled with explicit subgrid-scale models to perform conventional large-eddy simulations
(LES) [11].

3.2. Benefits of the WENO method for simulating complex shocked flows

Formally high-order methods better resolve complex flow features at long evolution
times than second- and third-order methods. Higher order methods are also more compu-
tationally efficient than lower order methods for the same accuracy [12, 13]. In particular,
sufficiently high order WENO methods are well-suited for simulating complex, compress-
ible evolving flows containing shocks and structures containing a wide range of scales.
For example, the advantage of WENO methods is realized in complex multidimensional
reshocked Richtmyer—Meshkov unstable flows [14]. Upwinding in the WENO method
leads to large numerical dissipation in relatively smooth flow regions away from shocks.
Methods for reducing this dissipation by hybridizing the WENO method with a high-
order scheme, and for improving the resolving power are discussed elsewhere [14]. In
the present work, higher-order (ninth-order) WENO reconstruction is used instead to
achieve lower numerical dissipation.

4. Three-Dimensional Simulations of Reshocked Richtmyer—Meshkov Insta-
bility

Numerical simulations were performed using the ninth-order WENO method. Pre-
sented here are the numerical simulation parameters, initial and boundary conditions,
and grid resolution. Mass fraction isosurfaces are used to visualize the instability evo-
lution following the passage of the shock, during reshock, and at late times following
reshock. In addition, enstrophy isosurfaces and cross-sections of the density within the
mixing layer are presented to visualize the small-scale structures as the instability devel-
ops spatially and temporally.

4.1. Numerical simulation parameters

The numerical simulation parameters were chosen to closely correspond to the Ma =
1.5 shock tube experiment of Vetter and Sturtevant [27]. The shock tube had a test
section of length 61 cm with a square cross section of size 27 cm. The initial gases are
air and sulfur hexafluoride SFg, with the shock initially launched in air so that the initial
refraction is from a lighter gas into a heavier gas. The initial temperature and pressure
were 11 = 296 °K and p; = 1 bar, respectively.

4.1.1. Initial gas composition

In the experiments, a membrane supported by a wire mesh located at the entrance
of the test section initially separated the air and SFg gases. In the present simulations
the properties of air and SFg gases are used to determine the properties of a mixture
assumed to be composed of 50% air and 50% SFg by volume, denoted air(SFg). The
properties of the gases are given in Table 4.1.1, and the properties of the mixture are
determined as follows.



] I air \ SFg | air(SFg) ||

M (g/mol) 28.95 146.05 84.62
p (g/cm?) 1.202 x 1073 5.494 x 1073 3.348 x 1073
v 1.4 1.093 1.1557

R (erg/g K) || 2.872011 x 10 | 5.692894 x 10° | 9.826513 x 10°
cp (erg/g K) || 1.005204 x 107 | 6.690681 x 10° | 7.294079 x 106
¢, (erg/g K) || 7.180028 x 108 | 6.121392 x 10° | 6.311427 x 106

Table 1: Properties of air, SFg, and air(SFg) mixture used in the WENO simulations.

The mixture density is pair(srs) = (Pair + PsFs)/2 and the mass fraction of air in the
mixture is My, = pair/(Qpair(5F6)). This mass fraction is then used to determine the
new adiabatic exponent of the mixture according to [20]

Mair Cp,air + (1 - mair) Cp,SFs (6)
Mair Co,air + (]- - mair) Cy,SFg

Yair(SFs) =

From this new value of the adiabatic exponent, standard ideal gas relations are used to
determine new values for the heat capacities for both air and SFg, ¢, and c¢,, and the
molecular weight of the mixture (see Table 4.1.1). This procedure gives v4;(sry) = 1.557
used as the adiabatic exponent for both the air and SFg gases in the simulations. As
the ratio of specific heats is constant for both gases in this study, some properties of the
flow may not be predicted very accurately (i.e., transmitted and reflected shock speeds,
time of reshock, initial interface velocity), but the mixing properties are not expected
to be strongly affected by the single-y formulation, as the flow is nearly incompressible
over most of the evolution for the Mach number considered [11, 18]. Selecting the shock
Mach number to match the initial velocity of the gases leads to a better match with the
experimental reshock condition [14]. As a result, the shock Mach number is adjusted to
match the initial growth rate predicted by linear stability analysis.

4.1.2. Computational domain, grid resolution, and boundary conditions

To match the shock tube test section dimension, the computational domain [0, L,] %
[0,L,] x [0, L] has spanwise dimension of L, = L. = 27 cm, with the perturbed initial
interface located 3 cm from the edge of the shock tube. Thus, to obtain a test section of
length L, = 61 cm, the total length of the computational domain along the streamwise
direction is L, = 64 cm, as illustrated in Fig. 1. The small-wavelength perturbation
corresponding to the membrane pushed through the wire mesh is clearly visible with 10
wavelengths per transverse direction. The grid resolution was 513 x 2572.

The following boundary conditions were used: (1) inflow at the test section entrance
in the streamwise (z) direction; (2) reflecting at the end wall of the test section in the
streamwise direction, and; (3) periodic in the spanwise (y and z) directions corresponding
to the cross-section of the test section. The reflecting boundary condition is implemented
by reversing the normal component of the velocity vector: u(x,t) = —u(x,t) at © = L,
and at the ghost points, which is exact and does not generate spurious noise.



Figure 1: Illustration of the shock tube test section having a length of 61 cm and square cross-sectional
width of 27 cm considered in the computational domain.

4.2. Model of the initial interfacial perturbation

A two-mode initial perturbation with random noise was used to model the shock tube
experiment. The initial conditions generalize the two-mode model of Cohen et al. (3)
with random noise similar to that of Hill et al. [11],

n(y, z) = a|sin (kiy y) sin (k1. 2)| — bcos (kay y) cos (k2. 2) + ¥(y, 2) , (7)

where a and b are the initial perturbation amplitudes, 1 (y, z) is a small-scale stochastic
perturbation, and the initial perturbation wavenumbers are

In the present simulations n, = n1, = 5 and ny, = ng, = 1 are the initial perturbation
mode numbers, and A, = A, = 27 cm are the initial perturbation wavelengths, so that

. 107y \ . 107z 21y 2mz

51n< T )sm( T )’ bc05(27>c05(27>+¢(y,2). (9)
The first term models the membrane pushed through the wire mesh, the second term
models the mesh distortion, and the stochastic noise ¥ (y, z) models the fragmentation
of the membrane. The superimposed noise on the deterministic two-mode perturbation
breaks symmetry and accelerates the development of nonlinear modal interactions. The
pre-shock Atwood number is A~ = 0.641 and the initial amplitudes are a = 0.0675
cm and b = 0.00675 cm (0.25% and 0.025% of L., respectively). The smallest values
supported on a 513 x 2572 grid are a = 0.05 cm and b = 0.005 cm.
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Figure 2: Spectrum Ey, (k) of the small-scale stochastic perturbation ¢ (x,y) used to break the symmetry,
shown on a log-log scale. Fiducials are shown for k* (red dashed line) and k=2 (blue dashed line).

The spectrum of the Fourier transform of the initial small-scale stochastic noise per-
turbation (k) is taken to be

4

L
) L , (10)

(kL) + B

where k = \/m is the two-dimensional wavenumber, L is a lengthscale, and B

is a dimensionless free parameter. This spectrum is an adaptation of the von Karméan
spectrum [28] with the following properties:

1. for small kL, the spectrum grows as Ey (k) ~ k*;

2. for large k, the spectrum scales as Ey (k) ~ k=2, approximating the surface pertur-
bations observed in many physical situations including the deuterium—tritium ice
surface roughness in inertial confinement fusion (ICF) target capsules [7].

The values L = 0.95 cm and B = 5v/2 are adopted in the present interfacial perturba-
tion model, corresponding to a peak in the spectrum that matches the dimension of the
wire mesh in the experiment: the spectrum Ey (k) is shown in Fig. 2. Hill et al. [11] and
Ukai et al. [26] instead assumed a Gaussian spectrum for the noise. The initial condition
(3) is a special case of the present initial condition corresponding to a = b = 0.27 cm
and ¥ = 0. As a thin membrane initially separated the two gases in the experiments,
the modeled initial interface in the present WENO simulations is sharp (nondiffusive).

The stochastic noise 1 (y, z) is created in wavenumber space by constructing the
Fourier transform @(ky,kz) as follows. Let Ak, = 2r/L, and Ak, = 2n/L, and use
these to define the wavenumbers k, and k. corresponding to a N, X N, matrix in k-
space. Next, determine the vector magnitude for each of the elements in the matrix
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Figure 3: The small-scale stochastic perturbation field (y, z) used to break the symmetry (top row),
the initial two-mode perturbation (middle row), arld n(y, z) (bottom row).



defining k. For each entry compute the corresponding value of 721\(/4) according to (10).
Multiply the result by a random phase e’ cos ¢, where ¢ and @ are random numbers.
The resulting value is used to set ¢ (k,,k.). Take the inverse two-dimensional Fourier
transform to obtain 4 (y, z). Finally, ¢(y, z) is normalized so that

(11)

corresponding to a 5% rms amplitude for the noise with s = 1/ fok Ey(k)dk. Figure
3 shows the noise ¥(y, 2), the two-mode perturbation [i.e., n(y, z) with ¢ (y, z) = 0], and

the two-mode perturbation 7(y, z) with the superposed noise ¥(y, z).

4.8. Visualization of the instability growth and mizing layer evolution

The instability evolution is visualized using isosurfaces of the mass fraction of the
heavier SFg gas, evaluated at mgp, = 1/2. The isosurface representation qualitatively
captures the center of the mixing layer and clearly shows the growth and interaction of
bubble- and spike-like structures. The isosurfaces obtained from the ninth-order WENO
simulation at different times as the instability develops are shown in Figs. 4-6 during
the early-time evolution, evolution through the reshock, and at later times up to 10 ms.
The two sides of the interface—the air side on which the spikes develop and the SFg side
on which the bubbles develop—are also shown.

The isosurfaces at ¢ = 0 ms in Fig. 4 show the initial perturbed interface on the
air and SFg sides. The large-wavelength perturbation representing the mesh distortion
with its small amplitude can only be observed indirectly through its effects on the small-
scale perturbation. Following the passage of the incident shock, spikes and bubbles form
at t = 0.25 ms. The spikes begin to roll-up, which can barely be seen through ¢t = 3
ms. At the earliest times shown, the structures grow nearly independently, with little
interaction. Mode couplings become significant after 1 ms, with a complex crenulated
interface developing just before reshock at 3 ms. Reshock occurs at ¢ ~ 3.25 ms (in good
agreement with the time of reshock in the experiment) and the bubbles are compressed.
Following reshock, inversion occurs with bubbles rapidly transforming into spikes and
vice versa. At t &~ 5 ms, the reflected rarefaction wave induced by the refraction of
the shock at the interface, interacts with the evolving interface and stretches the mixing
layer in the direction of the SFg, as seen from the location of the interface on the SFg
side. The arrival of the reflected rarefaction represents the last important wave—interface
interaction, as the reflected compression wave is very weak. Consequently, the flow nearly
becomes a purely decaying flow after ¢t = 6 ms. At ¢ = 10 ms, the flow exhibits a very
complex structure. However, remnants of the large bubble, and spike resulting from the
large wavelength perturbation are still present. In addition, despite the complex spatial
structure, the flow preserves a large degree of symmetry in the largest scales. For times
greater than 3.5 ms, the structures grow in amplitude much more rapidly than before
the reshock.

Cross-sections of the density in the (z,z)-plane centered on the point & = ;4 are
also presented at the same evolution times as the mass fraction isosurfaces in Fig. 7,
allowing a ‘side-on’ visualization of the small-scale structures present in the evolving

12



air side

w0
g
o
w0
g
io)
N
o
10-
wn
g
Al
0\
P 7 4559
0 13.8405
g 10
™

G- 51.0858
0 44.7227

SF¢ side

10+

0-
13.8405 ;
17.4589 0

2y

0.
44.7227 - -~
51.0858 0

Figure 4: Time-evolution of the mass fraction isosurface mgg, = 1/2 in the multi-mode Richtmyer—
Meshkov instability for times ¢ = 0, 0.25, 1, and 3 ms. Both the air and SFg sides of the isosurfaces are

shown.
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Figure 5: Time-evolution of the mass fraction isosurface mggr, = 1/2 in the multi-mode Richtmyer—
Meshkov instability for times ¢ = 3.25, 3.5, 5, and 6 ms. Both the air and SFg sides of the isosurfaces

are shown.
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Figure 6: Time-evolution of the mass fraction isosurface mgg, = 1/2 in the multi-mode Richtmyer—
Meshkov instability for times ¢ = 7 and 10 ms. Both the air and SFg sides of the isosurfaces are
shown.

mixing layer. The midpoint of the interface is

hy(t) + hs(t)

Tomia(t) = 5 , (12)
which is used to recenter the mixing layer width such that
1 z—wzna(t) 1
—— < - 13
2~ h(t) -2 (13)

Blue and red represent ‘pure’ fluid and intermediate colors represent ‘mixed’ fluid. The
‘mixing’ is solely due to numerical effects, rather than by molecular processes physically
present in the experiment. The numerical determination of the bubble and spike front
locations hy and hg, respectively, is discussed further in Section 5. The compression of
the layer at the time of reshock is also clearly seen, followed by a rapid spatial expansion
of the mixing layer. The density cross-sections illustrate the development of a well-mixed
complex layer at times ¢ > 5 ms.

4.4. Instability dynamics and the effects of reshock

The instability dynamics is further visualized using the enstrophy isosurfaces (evalu-
ated at the average value of the enstrophy) on the air (spike) side in Fig. 8. The mass
fraction isosurfaces and corresponding density cross-sections are also shown for reference.
Reshock occurs at t =~ 3.25 ms and the reflected rarefaction wave arrives at ¢ ~ 5 ms.
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Figure 7: Time-evolution of the density in the multi-mode Richtmyer—Meshkov instability at times ¢t = 0,
0.25, 1, 3, 3.25, 3.5, 5, 6, 7, and 10 ms. The densi%glcross—sections are shown on the (z, z)-plane. Blue
represents air and red represents SFg. The height of each image is 27 cm.
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Figure 8: Visualization of the mass fraction isosurface (left column), enstrophy isosurface (middle col-
umn), and density (z, z)-cross-section (right column), where blue represents air and red represents SFg
at 3, 3.25, 5, and 8 ms. The height of each density cross-section is 27 cm.
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Following reshock, the instability develops complex structure and the enstrophy field
transforms from elongated tubular structures into short, disordered tubular structures
with random orientations. A comprehensive discussion of reshocked two-dimensional
Richtmyer—Meshkov instability, including visualizations of density and vorticity fields,
mixing layer growth, time evolutions of a broad range of statistics and energy spectra,
and the effects of order of WENO reconstruction and grid resolution was previously
presented [14, 15, 24].

5. Comparison of the Mixing Layer Width with Experimental Data and with
the Mikaelian Reshock Model

The time-evolution of the mixing layer width is of principal interest in experimental,
numerical, and modeling studies of the Richtmyer—Meshkov instability. While progress
has been made in fielding new experimental diagnostics in studies of continuously- or
impulsively-accelerated two-fluid flows, most experimental studies are still limited to
visualization of the progression of the instability and inferred perturbation amplitude or
mixing layer growth in single- and multimode studies, respectively.

5.1. Definition of the mixing layer width
To determine the mixing layer width consider the mole fraction

m(x,t) My
[1—m(x, t)] Mz + m(x,t) My’

X(zx,t) = (14)
where m is the mass fraction of SFg and M; and My are the molecular weights of air
and SFg, respectively. Spatially-averaging X in the periodic y- and z-directions gives the
mean mole fraction along the shock propagation direction

o 1 L. Ly,
X(z,t) = / / X(z,t)dydz, (15)
LyL.Jo Jo

where L, and L, are the cross-sectional widths of the domain. The spike and bubble
front locations, hy(t) and hy(t), are defined as the = position where X > e and X < 1—e,
respectively, with e = 0.01 used in the present investigation (corresponding to a 1-99%
criterion in the mean mole fraction). The total mixing layer width is then the difference
between the bubble and spike front locations,

h(t) = hy(t) — hs(t). (16)

The same definitions were used in a previous comprehensive two-dimensional study of
the Collins and Jacobs [6] single-mode Mach 1.2 air(acetone)/SFg experiment using the
WENO method [14, 15, 24]. Note that this definition of the mixing layer width is quite
sensitive to the choice of e.

The z-t diagram showing the shock and positions of the bubble and spike fronts is
shown in Fig. 9. The initial shock reflects at the end wall at ¢ ~ 2.2 ms and the reflected
shock interacts with the interface at ¢ ~ 3.25 ms. The reflected shock reaches z = 0 at
t ~ 4.5 ms and exits the domain. Before and after reshock, the growth of the bubble and
spike fronts is nearly symmetric at this intermediate Atwood number.
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Figure 9: The z-t diagram showing the midpoint of the interface z,,;q4 —, — — bubble front location hy,
— . spike front location hs, and shock —. The horizontal distance between the spike and bubble fronts

is the mixing layer width h.

5.2. Evolution of the mizing layer width and comparison with the Mikaelian model

The mixing layer width from the simulation, h(t), is shown in Fig. 10. Table 2 gives
a comparison of various pre- and post-reshock quantities obtained from the simulation
with the experimental data. The growth rates dh/dt agree well with the experimental
measurements of 4000 cm/s (before reshock) and 32600 cm/s (after reshock) [27]: the
simulation data is in good agreement with the velocity jumps due to the initial shock
passage and to reshock. The mixing layer width also quantitatively agrees with the
experimental data after reshock, but overpredicts the data before reshock. The overes-
timation of the width before reshock is likely related to limited spatial resolution along
the shock propagation direction and the choice of initial perturbation (as well as possible
membrane break-up effects present in the experiment but not represented in the simu-
lations). As in the simulation of Hill et al. [11], the simulation width prior to reshock
was approximately two times larger than the experimentally measured width (as the
grid resolution required initial perturbations much larger than those inferred from the
experiment). Smaller values of a (requiring much higher spatial resolutions) may provide
better quantitative agreement with the pre-reshock amplitude data.

The post-reshock mixing layer widths were also compared to the prediction of the
Mikaelian [19] model (2) in Fig. 10, which predicts the velocity

dh
Vo= 5 = 0.28 A’U,l A+ . (17)

dt
The simulation predicts a velocity vy that is ~ 10% smaller than the data before reshock
and ~ 3% smaller than the data after reshock. For a short time following reshock (and
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Figure 10: Comparison of the mixing layer width from the simulation with the Vetter—Sturtevant exper-
imental growth rates and data points [27], and with the prediction of the Mikaelian reshock model (2).
The simulation had a = 0.0675 cm and b = 0.00675 cm.

Experimental data H Simulation data H

Pre-reshock

Post-reshock

Pre-reshock

Post-reshock

Au (cm/s)
A+
vo (cm/ms)

15000
0.731
3.07

203061
0.7
3.98

15504
0.6352
2.76

20584
0.6691
3.86

Table 2: Pre- and post-reshock values of the velocity jump at the interface Au, Atwood number AT,
and mixing layer growth rates vg obtained in the simulation and comparison to experimental data.
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Figure 11: Comparison of the mixing layer width from the simulations using different perturbation
amplitudes a and b with the Vetter—Sturtevant experimental growth rates and data points [27], and with
the prediction of the Mikaelian reshock model (2).

before the arrival of the reflected rarefaction at ¢ ~ 5 ms), the Mikaelian model predicts
a growth rate in generally good agreement with the simulation. Linear post-reshock
growth was also recently confirmed in the air/SFg experiments of Leinov et al. [16, 17].

5.8. Sensitivity of the mizing layer width to the initial amplitudes

The sensitivity of the mixing layer width in the reshocked multimode Richtmyer—
Meshkov instability has thus far received little attention. As there is freedom in specifying
the initial amplitudes in the two-mode perturbation, it is useful to investigate this sen-
sitivity in simulations of the Vetter—Sturtevant experiment. Figure 11 shows the mixing
layer widths from a set of simulations with five different sets of values of the perturba-
tion amplitudes a and b, with a ranging from 0.25% to 1% and b ranging from 0.025%
to 0.25%. As in Section 4, the percentage refers to the percentage of L,. Evidently, the
mixing layer width is quite sensitive to the initial amplitudes following the initial shock
and before reshock. For nearly all choices of a and b, the simulation growth rates agree
well with the data before and after reshock. In general, the post-reshock width is less
sensitive to the choices of a and b. All widths agree quantititatively for approximately
1 ms following reshock and then begin to differ just before the arrival of the reflected
rarefaction at t ~ 5 ms. Note that larger pre-reshock amplitudes correspond to smaller
post-reshock amplitudes. The case corresponding to an a of 0.25% and b of 0.125% is in
best overall agreement with the data following reshock. Just after reshock and prior to
the interaction of the reflected rarefaction with the mixing layer, the simulation growth
rates are also in good agreement with the prediction of the Mikaelian model (2).
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6. Amplification of Turbulence by Reshock

Experimental and numerical simulation studies of the singly- and multiply-shocked
Richtmyer-Meshkov instability have largely focused on the evolution of the mixing layer
width h(t). Furthermore, most instability growth models can only predict h. However,
RANS and LES models must also accurately predict the amplification of turbulence by
reshock. Here, the amplification is quantified by considering turbulent energy and en-
strophy spectra, and the production terms in the turbulent kinetic energy and enstrophy
equations.

6.1. Amplification of energy spectra

The amplification of the turbulent kinetic energy and turbulent enstrophy spectra
resulting from reshock of the mixing layer is investigated here. The energy associated
with each Fourier mode k is obtained by averaging over the extent of the mixing layer
to obtain the two-dimensional energy spectrum of a general field ¢,

1 hy(t)
E -
s (k1) Y0 /hs(t)

where q@(k,x,t) = (2;)2 ffooo ffooo é(z,y, z,t) exp (—ikyy — ik,z) dydz is the Fourier coef-
ficient of the function ¢(a,t) periodic in the y- and z-directions. Figure 12 shows the
time evolution of the turbulent kinetic energy and turbulent enstrophy spectra before
reshock, after reshock, and at late times over 1 ms intervals. Each spectrum is ampli-
fied at all spatial scales (i.e., wavenumbers) by one to two orders of magnitude by the
reshock, which imparts energy into the layer and generates even smaller scale structures
(that become even more challenging to resolve on a numerical grid). Velocity fluctua-
tions and their gradients are thus amplified, as reflected in the increased magnitude of
the spectra. The spectra continue to decay relatively slowly after reshock and to the
late time shown. At ¢ = 9 ms, both spectra are still considerably larger in magnitude
at all wavenumbers than before reshock at t = 3 ms. Fiducials are shown for k~5/3 and
k/3 for the turbulent kinetic energy and turbulent enstrophy spectra, respectively. The
limited spatial resolution and absence of an explicit subgrid-scale model lead to very
short apparent inertial subrange scalings over less than a decade in wavenumber. It is
possible that Kolmogorov inertial subranges scalings in three-dimensional homogeneous
turbulence, E(k) oc k%% and Q(k) o k*E(k) o« k'/3, emerge at even higher spatial
resolutions or at greater evolution times. Note that the late-time phase is a ‘quasi-decay’
phase in which the influence of the shock on the flow field diminishes as time evolves and
the fields decay.

ok, x,t)

—~ 2
’m, (18)

6.2. Amplification of principal turbulence production terms

The effects of reshock on the principal physical transport processes can also be inves-
tigated by considering the production terms in the enstrophy (Q = w?/2) and turbulent

St o — ;
kinetic energy (B = ujju’/2) transport equations

dQ dE"
— = P, S, C D
P a et oet b, Py
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before reshock after reshock late-times

Figure 12: Time-evolution of the turbulent kinetic energy spectrum (top row) and of the turbulent
enstrophy spectrum (bottom row). The left, middle, and right columns show the spectra on a log-log
scale before reshock, after reshock, and at late times, respectively. A k=5/3 and k!/3 fiducial is shown
for the turbulent kinetic energy and turbulent enstrophy spectra, respectively.

respectively (note that the enstrophy equation is not averaged). The baroclinic produc-
tion, stretching, and compression terms in the enstrophy equation are
w-(VpxVp
sz:(pp) y SQEpw~(w~Vu) y CQE—2PQV'U, (20)
respectively, and the buoyancy production, shear (Reynolds stress) production, pressure—
dilatation, and transport terms in the turbulent kinetic energy equation are

__op —__ow ou” o —
Po=—u] o2 Po=—pulul S0 M=y ot T=—— (B + P
b U] &UJ ’ s pU; u] 81'] ) p ax] ’ ax] P Uj +p UJ )

(21)
respectively. Here, the Reynolds and Favre averages, ¢ and ¢, are defined as the spatial
averages over the periodic directions

B 1 L. rL, _ 6
et = [ e o g =22 (22)

and the corresponding Reynolds and Favre fluctuating fields are ¢(x,t)’ = ¢(x,t)—d(z, t)
and ¢(x,t)" = ¢(x,t) — (;NS(x,t), respectively. Note that the transport equations are
derived from averaging the Euler (rather than Navier—Stokes) equations, so that (19) do
not contain the turbulent kinetic energy and enstrophy dissipation rate terms. In such
simulations, it is possible to define a turbulent kinetic energy dissipation rate in terms
of the turbulent enstrophy Q= w;’w;-’/Q by ¢ = B = E'\ 29"
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Figure 13: The baroclinic production of enstrophy Pq, buoyancy production of kinetic energy P, and
shear production of kinetic energy Ps visualized on the mass fraction isosurface mgr; = 1/2 before
reshock (3 ms), after reshock (3.25 ms), at 4.75 ms, and at 5 ms (corresponding to the arrival of the
reflected rarefaction at the interface).
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Figure 13 shows the mass fraction isosurface mgp, = 1/2 colored by the baroclinic
enstrophy production Pq, buoyancy production P,, and shear production P, at 3, 3.25,
4.75, and 5 ms. The color scale indicates the magnitude of each term, clearly indicating
the amplification of these fields by many orders of magnitude through the reshock of the
mixing layer. After reshock, the magnitudes slowly decrease in general. These fields are
not currently available from experimental studies of the Richtmyer—Meshkov instability
and must be obtained from numerical simulation data. Quantitative estimates of these
amplifications by reshock of the evolving mixing layer are essential for developing and
validating higher fidelity Reynolds-averaged Navier—Stokes (RANS) models for reshocked
Richtmyer—Meshkov instability-induced mixing. Reshock is also necessary to achieve a
sufficiently complex mixing layer so that applying traditional turbulent averages of the
form (22) is meaningful [24].

7. Discussion and Conclusions

A two-mode initial perturbation with random noise was constructed to model the
reshocked Mach 1.5 air/SFg Vetter—Sturtevant experiment. As in other simulations of
the multimode Richtmyer—Meshkov instability [11, 26], random noise was used to break
symmetry and to accelerate the development of nonlinearity. A visualization of the insta-
bility evolution through the mass fraction and enstrophy isosurfaces, and density cross-
sections was presented to exhibit the initially linear instability growth, the subsequent
nonlinear interactions among structures, and the development of complex flow structure
after reshock. The enstrophy isosurface showed a qualitative change after reshock from
long, elongated tubes aligned along the direction of shock propagation to small, short
tubular structures with random orientations characteristic of turbulent flows.

It was shown that the growth rate of the mixing layer before and after reshock
agreed well with the experimentally measured growth rates and with the prediction of the
Mikaelian reshock model [19]. The simulation amplitude overpredicted the experimental
amplitude before reshock due to the limited spatial resolution and large initial perturba-
tion amplitudes, but was in good agreement with the data after reshock. A parametric
study of the mixing layer width growth was also performed for several choices of the
inital two-mode perturbation amplitudes a and b. The mixing layer width was found to
be quite sensitive to the initial amplitudes following the initial shock and before reshock.
For nearly all a and b, the simulation growth rates agreed well with the data before
and after reshock. The post-reshock widths were less sensitive to the choices of a and
b. All widths agreed quantititatively for approximately 1 ms following reshock and then
began to diverge just before the arrival of the reflected rarefaction at ¢ ~ 5 ms. The
effects of order and resolution on the mixing layer width and other quantities were not
considered here due to the computational expense of simulations with resolutions greater
than 513 x 2572

While the evolution of the mixing layer width is of central importance to assessing the
predictions of RANS and LES models, other dynamics of the layer are more directly re-
lated to the properties of turbulence in the mixing layer. For example, turbulence models
must accurately predict the amplification of turbulence by the reshock. The amplifica-
tion of the turbulence intensity in the mixing layer following reshock was quantified here
using the turbulent kinetic energy and turbulent enstrophy spectra, both of which in-
creased by one to two orders of magnitude. The effects of reshock were also quantified by
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showing the strong amplification and subsequent slow decay of the baroclinic enstrophy
production, buoyancy production, and shear production terms on the SFg mass fraction
one-half isosurface.

The reduced numerical dissipation in formally high-order methods, coupled with con-
sideration of the computational cost, suggests that such methods are well-suited for
simulating complex multiscale flows with shocks. Lower dissipation simulations preserve
small-scale structures and provide a more complete representation of the flow dynamics.
Low-order representations of complex flow physics are considerably different than high-
order representations and, in general, a broad range of quantities should be considered
to differentiate between the predictions of different numerical methods [24]. The use
of formally higher-order methods is also more computationally efficient than increasing
the grid resolution, as demonstrated for the two-dimensional Richtmyer—Meshkov insta-
bility [14], leading to a significant advantage in multidimensional simulations of such
flows. While definitive experimental data corresponding to the quantities considered in
the present study is required to assess the simulation predictions, higher order higher
resolution simulations will likely provide higher fidelity, detailed data for the forseeable
future. Thus, the current study has important implications for developing more predictive
turbulent transport models describing complex, shock-driven flows. Hybrid high-order
WENO/central difference Navier—Stokes simulations of Richtmyer—Meshkov instability
growth that further reduce the effects of numerical dissipation in smooth flow regions are
in progress.
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